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Abstract

We use the subordination principle together with an equivalent norm approach and semigroup pertur-
bation theory to state and set conditions for a non-autonomous fragmentation system to be conservative.
The model is generalized with the Caputo fractional order derivative and we assume that the renormalizable
generators involved in the perturbation process are in the class of quasi-contractive semigroups, but not
in the class G(1, 0) as usually assumed. This, thenceforth, allows the use of admissibility with respect to
the involved operators, Hermitian conjugate, Hille-Yosida’s condition and the uniform boundedness to show
that the operator sum is closable, its closure generates a propagator (evolution system) and, therefore, a
C0-semigroup, leading to the existence result and conservativeness of the fractional model. This work brings
a contribution that may lead to the full characterization of the infinitesimal generator of a C0-semigroup
for fractional non-autonomous fragmentation and coagulation dynamics which remain unsolved. c©2016 All
rights reserved.
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1. Introduction and useful definitions

The dynamical behavior of a system that can break up to produce smaller particles can be generalized
to give the integro-differential system:
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t u(t, x) = −a(t, x)u(t, x) +

∫ ∞
x

a(t, y)b(t, x, y)u(t, y)dy,

u(τ, x) = uτ (x), 0 ≤ τ < t ≤ T, x > 0,

(1.1)

where

C
0 D

α
t u(x, t) =

∂α

∂tα
u(x, t) =

1

Γ(1− α)

t∫
0

(t− r)−α ∂
∂r
u(x, r)dr

with 0 ≤ α < 1 is the fractional derivative of u(x, t) in the sense of Caputo [4], with Γ the Gamma function

Γ(z) =

∫ ∞
0

tz−1e−1dt, z ∈ C.

For reasons of simplicity we denote C
0 D

α
t = Dα

t . Moreover, u is the particle mass distribution function
(u(τ, x) = uτ (x) is the mass distribution at some fixed time τ ≥ 0) with respect to the mass x, b(t, x, y)
is the distribution of particle masses x spawned by the fragmentation of a particle of mass y, at the time
t ≤ T ∈ R and a(t, x) is the evolutionary time-dependent fragmentation rate, that is, the rate at which
mass x particles break up at a time t. The first term on the right-hand side of (1.1) describes the reduction
in the number of particles in the mass range (x; x + dx) due to the fragmentation of particles in the same
range. The second term describes the increase in the number of particles in the range due to fragmentation
of larger particles.

The idea here is to analyse the equation (1.1) in the Banach space L1(I, X1) where I = [0, T ] and

X1 = L1([0,∞), xdx) =

{
ψ : ‖ψ‖X1 :=

∫ ∞
0

x|ψ(x)| dx <∞
}
,

using the theory of evolution semigroup.
Throughout the paper, we will consider the following regularity assumptions:

(t, x)→ a(t, x) ∈ L1

(
[0, T ′], L∞([k, l])

)
for any 0 < k < l <∞ and T ′ ∈ (0, T ),

b(t, x, y) is a positive measurable function with b(t, x, y) = 0 for all x ≥ y and 0 ≤ t ≤ T,
(1.2)

and the local conservative law ∫ y

0
xb(t, x, y)dx = y (1.3)

for all y ≥ 0 and 0 ≤ t ≤ T.
Up to now, existence results and honesty have been proved for number of fragmentation (autonomous

or non-local) models, see for e.g. [6, 9], where the authors used various methods including the substochastic
semigroup theory. But models with time dependent coefficients (non-autonomous) remain barely touched
and there are still only few papers devoted to their analysis (well-posedness, conservativeness, honesty, etc.)
In [7], the authors used techniques of truncation to prove existence, uniqueness and mass conservation for a
model of type (1.1). The authors in [13] use evolution semigroups approach which allows them to build on
the substochastic semigroup theory and obtain an equivalent result as in [12]. In the analysis of the book
by Tosio Kato [10] and later improved by Da Prato et al. [5], it is generally assumed that the generators
A(t) and B(t) involved in the perturbation are of class G(1, 0), but this condition is modified in this paper
as we will see later in our analysis.

We begin by recasting (1.1) as the non-autonomous abstract Cauchy problem in X1:{
Dα
t u(t) = Q(t)u(t), 0 ≤ τ < t ≤ T,
u(τ) = uτ ,

(1.4)

where Q(t) is defined by Q(t) = Q(t) and represents the realization of Q(t) on the domain
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D(Q(t)) = {u ∈ X1; Q(t)u(t) ∈ X1},

with (Qu) defined as

(Qu)(t, x) = (Qu)(t)(x) = −a(t, x)u(t, x) +

∫ ∞
x

a(t, y)b(t, x, y)u(t, y)dy,

Q(t) is seen as the pointwise operation

ψ(t, x) 7−→ −a(t, x)ψ(t, x) +

∫ ∞
x

a(t, y)b(t, x, y)ψ(t, x)dy

defined on the set of measurable functions. Q(t) indeed defines various operators. The aim here is to analyze
the problem by rephrasing it in abstract form (abstract Cauchy problem (ACP)) as an ordinary differential
equation.

Let us start with something simple and come back to the abstract Cauchy problem (1.4); To analyze and
show the existence for this system, we will need a two-parameter family. We consider that for 0 ≤ t ≤ T ,
Q(t) is a bounded linear operator in X1 and that t −→ Q(t) is continuous in the uniform operator topology.
We have the following definitions.

Definition 1.1 (Solution operator for a fractional model). Consider an operator Q applying in the fractional
model

Dα
t (u(x, t)) = Qu(x, t), 0 < α < 1, x, t > 0, (1.5)

subject to the initial condition
u(x, 0) = f(x) x > 0, (1.6)

and defined in a Banach space X1. A family (GQ(t))t>0 of bounded operators on X1 is called a solution
operator of the fractional Cauchy problem (1.5)-(1.6) if

(i) GQ(0) = IX1 ;

(ii) GQ(t) is strongly continuous for every t ≥ 0;

(iii) QGQ(t)v = GQ(t)Qv for all v ∈ D(Q);

(iv) GQ(t)D(Q) ⊂ D(Q);

(v) GQ(t)v is a (classical) solution of the model (1.5)-(1.6) for all v ∈ D(Q), t ≥ 0.

It is well-known ([3, 6]) that an operator Q̃ ∈ G(M,ω) means Q̃ generates a C0-semigroup (G
Q̃

(t))t>0 so
that there exists M > 0 and ω such that

‖G
Q̃

(t)‖ ≤Meωt. (1.7)

Whence, by analogy if the fractional Cauchy problem (1.5)-(1.6) has a solution operator (GQ(t))t>0 verifying
(1.7), then we say that Q ∈ Gα(M,ω). The solution operator (GQ(t))t>0 is positive if

GQ(t) ≥ 0

and contractive if
‖GQ(t)‖X1 ≤ 1,

and we say Q ∈ Gα(1, 0).

Definition 1.2 (Evolution system [13] or propagator [11]). A two-parameter family of bounded linear
operators U(t, τ), 0 ≤ τ < t ≤ T, is called propagator or evolution system if the following conditions are
respected:
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(i) U(τ, τ) = I ;

(ii) U(t, r)U(r, τ) = U(t, τ) for 0 ≤ τ ≤ r ≤ t ≤ T ;

(iii) (t, τ) −→ U(t, τ) is strongly continuous for 0 ≤ τ ≤ t ≤ T.

Next, we will find the propagator U(t, τ) associated with (1.4) such that u(t) = U(t, τ)uτ is in some
sense a solution of (1.4) satisfying the initial condition u(τ) = uτ . For that we need the following principle.

1.1. Subordination principle [3, 6]

Let us consider the order α as in (1.4). Subordination principle summarizes as follows: The same
operator Q guarantees better properties of the solution of (1.4) if we consider another order γ such that
γ < α. In other words, the subordination principle states that if Q generates a solution operator for the
model (1.4) with the order α > 0, then it also generates a solution operator for the model (1.4) with any
order γ > 0 such that γ < α. Hence, making use of this principle we just need to consider the model (1.4):{

Dα
t u(t) = Q(t)u(t), 0 ≤ τ < t ≤ T,
u(τ) = uτ ,

(1.8)

with α = 1.

Lemma 1.3. Let Q(t) be a bounded linear operator in X1 for 0 ≤ t ≤ T . If the function t −→ Q(t) is
continuous in the uniform operator topology, then for every uτ ∈ X1, the abstract Cauchy problem (1.8) has
a unique classical solution u given by the relation:

u(t) = uτ +

∫ t

τ
Q(ς)u(ς) dς. (1.9)

Proof. See [13, Theorem 5.1, Chapter 5], the proof is done in a Banach space X which is also true in X1.

Theorem 1.4. There is a propagator U(t, τ) associated with the initial value problem (1.8) such that
U(t, τ)uτ is its solution satisfying the initial condition u(τ) = uτ .

Proof. From Lemma 1.3, we already have the existence and uniqueness of the solution. Let u(t) be this
solution. We define the so-called solution operator of (1.8) by

U(t, τ)uτ = u(t) for 0 ≤ τ ≤ t ≤ T. (1.10)

• For every uτ ∈ X1, U(τ, τ)uτ = u(τ) = uτ then U(τ, τ) = I (condition (i)).

• For every uτ ∈ X1, we have U(t, τ)uτ = u(t) and U(t, r)U(r, τ)uτ = U(t, r)u(r) = u(t), then condition
(ii) follows from the uniqueness of the solution of (1.8).

• It is obvious that U(t, τ) is a linear operator defined in all X1 since (1.8) is linear. The relation (1.9)
implies ‖u(t)‖ ≤ ‖uτ‖ +

∫ t
τ ‖Q(ς)‖ ‖u(ς)‖ dς and from Gronwall’s inequality we also have ‖u(t)‖ ≤

‖uτ‖ exp
(∫ t

τ ‖Q(ς)‖ dς
)

. Then, (1.10) yields ‖U(t, τ)uτ‖ = ‖uτ‖ exp
(∫ t

τ ‖Q(ς)‖ dς
)
, leading to

‖U(t, τ)‖ = exp

(∫ t

τ
‖Q(ς)‖ dς

)
.

Whence, U(t, τ) is bounded and, therefore, strongly continuous. This concludes the proof.

The fact that Q(t) is bounded actually makes this existence result easier to obtain. Unfortunately, Q(t)
is not always bounded and then, we use, in the following section, a different approach to obtain an equivalent
result.
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2. Equivalent norm approach

Let us come back to the equation (1.8) and split it to have (1.1) written in the abstract form:{
Dα
t u(t) = A(t)u(t) +B(t)u(t), 0 ≤ τ < t ≤ T,
u(τ) = uτ ,

(2.1)

where A(t) is defined as A(t) = A(t) and represents the realization of A(t) on the domain D(A(t)) = {u ∈
X1; A(t)u ∈ X1}, with

[A(t)uτ ](x) = −a(t, x)uτ (x)

and B(t) is defined as B(t) = B(t) and represents the realization of B(t) on the domain D(B(t)) with

[B(t)uτ ](x) =

∫ ∞
x

a(t, y)b(t, x, y)uτ (x)dy.

Making use of the assumptions (1.2) and (1.3), A(t) is bounded (then the previous theorem and lemma apply)
and it is easy to show that (see [6] or [9]) for any u ∈ X1, B(t)u ∈ X1, so we can take D(B(t)) = D(A(t))
and (A(t) +B(t), D(A(t))) is well-posed operator. Let us put

X1 = L1(I, X1) :=

{
ψ : [0, T ]× R 3 (σ, x)→ u(σ, x), ‖ψ‖1 :=

∫ T

0

∫ ∞
0

x|ψ(σ, x)|dσdx <∞
}
.

In the following section the subscript t in At means the operator A depends on time t but is defined in X1

instead of X1. Our aim here is to set some conditions in X1 under which the operator sum Kt:

Ktψ = Atψ +Btψ, on D(At) ∩D(Bt) = D(At)

is closable, its closure generates a propagator, and therefore is a C0 semigroup. We rely on the following
theorem which was originally proved by Tosio Kato [10] and later improved by Da Prato et al. [5].

Theorem 2.1. Consider in X1 the operators At and Bt be generators both belonging to the class G(1, 0). If
D(At) ∩D(Bt) is dense in X1 and ran(At + Bt + ξ) is dense in X for some ξ < 0, then Kt is closable and
its closure K̄t is a generator from the class G(1, 0).

The conditions At and Bt ∈ G(1, 0) are dropped in this paper to provide stronger results. Let us treat
the integral operator in (2.1) as a perturbation of the much easier operator of multiplication by a on X1

[A(t)uτ ](x) = −a(t, x)uτ (x).

Recall that (Theorem 1.4) A(t)t∈I (I = [0, T ]) is a family of generators of C0-semigroups in X1, then, for
any fixed t ∈ I = [0, T ], A(t) generates a propagator U(t, τ), 0 ≤ τ < t ≤ T and this propagator defines a
C0-semigroup (SAt(s))s≥0 in X1 by the relation

[SAt(s)uτ ](σ) = χI U(σ, σ − s)uτ (σ − s) = χI exp

(
−
∫ σ

σ−s
a(ξ, .)dξ

)
uτ (σ − s), uτ ∈ X1, (2.2)

where χI is the characteristic function of I and σ ∈ I. Then, when we say A is the generator of C0-
semigroups in X1, we mean A generates a propagator which defines a C0-semigroups in X1 satisfying the
relation (2.2). In the following definition, we assume that Y is a subspace of X1 which is closed with respect
to the norm ‖.‖Y , not necessarily in the norm ‖.‖1 (hence Y is itself a Banach space).

Definition 2.2. Let SAt(s)s≥0 be a C0-semigroup and At its infinitesimal generator. A subspace Y of X1

is called At−admissible if it is an invariant subspace of SAt(s), s ≥ 0 i.e., SAt(s)Y ⊆ Y, and the restriction
of SAt(s) to Y (i.e., SǍt

(s) := SAt(s)|Y , s ≥ 0) is a C0-semigroup in Y (i.e., it is strongly continuous in the
norm ‖.‖Y ).
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If T : Y −→ X1 is the embedding operator of Y into X1, we have

SAt(α)Tu = TSǍt
(α)u, u ∈ Y,

which gives
AtTu = TǍtu, u ∈ D(Ǎt),

with
D(Ǎt) = {u ∈ D(At) ∩ Y : Atu ∈ Y }. (2.3)

Recall that the adjoint A∗t of At is a linear operator from D(A∗t ) ⊂ X ∗1 into X ∗1 (the dual of X1) and is
defined as follows: D(A∗t ) is the set of all elements x∗ ∈ X ∗1 for which there is a y∗ ∈ X ∗1 such that

〈x∗, Atx〉 = 〈y∗, x〉 for all x ∈ D(At) (2.4)

and if x∗ ∈ D(A∗t ) then y∗ = A∗tx
∗ where y∗ is the element of X ∗1 satisfying (2.4). With the assumptions

(1.2) and (1.3), we can state the following lemma.

Lemma 2.3. Let Ǎt and B̌t two operators defined by (2.3) and satisfying, for all λ ∈ (0,∞) ⊂ ρ(Ǎt) and
κ ∈ (0,∞) ⊂ ρ(B̌t),

‖(λI − Ǎt)−1‖Y ≤
1

λ
, (2.5)

‖(κI − B̌t)−1‖Y ≤
1

κ
, (2.6)

in the Banach space Y. If either Ǎt
∗

or B̌t
∗

is densely defined in Y ∗, then for any η < 0 we have the
inequality:

|η|‖v‖Y ∗ ≤ ‖Ǎt
∗
v + B̌t

∗
v + ηv‖Y ∗ , v ∈ D(Ǎt

∗
) ∩D(B̌t

∗
). (2.7)

Proof. We suppose that D(B̌t
∗
) is dense in Y ∗ and define the sum

Ǩt,ε := Ǎtu+ B̌t(I + εB̌t)
−1u, u ∈ D(Ǩ) = D(Ǎt), ε < 0.

It is obvious that Ǩt,ε also satisfies the relations (2.5) or (2.6) since Ǎt and B̌t do. Then the relation (2.5)
yields

‖(λI − Ǩt,ε)
−1u‖Y ≤ ‖(λI − Ǩt,ε)

−1‖Y ‖u‖Y ≤
1

λ
‖u‖Y , u ∈ Y, λ > 0, ε < 0,

leading to

‖u‖Y ≤
1

λ
‖(λI − Ǩt,ε)u‖Y , u ∈ Y, λ > 0, ε < 0

≤ 1

λ
‖(Ǩt,ε − λI)u‖Y , u ∈ Y, λ > 0, ε < 0

≤ 1

|η|
‖(Ǩt,ε + ηI)u‖Y , u ∈ Y, ε < 0, where we have set − λ = η < 0

or
‖(Ǩt,ε + ηI)u‖Y ≥ |η|‖u‖Y , u ∈ D(Ǩt,ε) = D(Ǎt), ε < 0, η < 0.

Immediate properties of Hermitian conjugate give

‖(Ǩ∗t,ε + ηI)v‖Y ∗ ≥ |η|‖v‖Y ∗ , v ∈ D(Ǩ∗t,ε) = D(Ǎ∗t ), ε < 0, η < 0, (2.8)

and
Ǩ∗t,εv = Ǎ∗t v + B̌∗t (I + εB̌∗t )−1v, v ∈ D(Ǩ∗t,ε) = D(Ǎ∗t ), ε < 0. (2.9)
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Since B̌t
∗

is densely defined in Y ∗, we have

(I + εB̌∗t )−1 −→ I as ε↗ 0

and then,
Ǩ∗t,εv −→ Ǎ∗t v + B̌∗t v as ε↗ 0.

Substituting the latter relation in (2.8) yields (2.7).
The approach is the same if we consider that it is rather Ǎt

∗
which is densely defined in Y ∗.

Corollary 2.4. Let At and Bt be two closed and densely defined operators satisfying, for all λ ∈ (0,∞) ⊂
ρ(At) and κ ∈ (0,∞) ⊂ ρ(Bt),

‖(λI −At)−1‖1 ≤
1

λ
,

‖(κI −Bt)−1‖1 ≤
1

κ
on X1. Let Y ↪→ X1 be admissible with respect to At and Bt and let the operator Bt verify

Y ⊆ D(Bt). (2.10)

We assume that the induced generators Ǎt and B̌t, given by (2.3), are closed, densely defined and satisfy
the relations (2.5), and (2.6), respectively. If D(B∗t ) is dense in X ∗1 then

|η|‖v‖Y ∗ ≤ ‖Ǎt
∗
v + B̌t

∗
v + ηv‖Y ∗ , v ∈ D(Ǎt

∗
) ∩ T ∗X ∗1 , η < 0 , (2.11)

where T : Y −→ X1 is the embedding operator.

Proof. Let v ∈ D(Ǎt
∗
) ∩ T ∗X ∗1 , then there is w ∈ X ∗1 such that v = T ∗w. we also have T ∗X ∗1 ⊂ D(B̌t

∗
)

thanks to the condition (2.10). Therefore, the relation (2.9) of the previous lemma is applied to v = T ∗w
as:

Ǩ∗t,εT
∗w = Ǎ∗tT

∗w + B̌∗t (I + εB̌∗t )−1T ∗w, ε < 0.

Since T is the embedding operator of Y into X1, we have

Ǩ∗t,εT
∗w = Ǎ∗tT

∗w + B̌∗t T
∗(I + εB∗t )−1w, ε < 0,

which is well-posed since the operator BtT : Y → X1 is bounded thanks to (2.10). Since B∗t is densely
defined in X ∗1 , we have

(I + εB∗t )−1 −→ I as ε↗ 0

and then,
Ǩ∗t,εT

∗w = Ǎ∗tT
∗w + B̌∗t T

∗(I + εB∗t )−1w −→ Ǎ∗tT
∗w + B̌∗t T

∗w as ε↗ 0.

Substituting the latter relation in (2.8) with v = T ∗w yields (2.11).

Remark 2.5. It is in general possible to find in the Banach Space X1 a new norm ‖.‖, which is equivalent to
its natural norm

‖u‖1 :=

T∫
0

∞∫
0

x|u(σ, x)| dσdx,

such that the operator At becomes a generator of the contraction semigroups on X1.

Indeed, since At is the generator of a C0-semigroup, let us say (SAt(s))s≥0, there is M > 0 and ω such
that for all s ≥ 0, ‖(SAt(s)‖1 ≤Meωs. We have

‖(SAt(s)u‖1 ≤Meωs‖u‖1, ∀u ∈ X1 ≤MAte
ωs.

We set

‖u‖ = (MMAt)
−1 sup

s≥0
e−ωs

T∫
0

∞∫
0

x|SAt(s)u(σ, x)| dσdx.
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Simple calculations show that

T∫
0

∞∫
0

x|u(σ, x)| dσdx = ‖u‖1 ≤MMAt‖u‖ ≤M2MAt‖u‖1, ∀u ∈ X1,

which proves that the norm ‖.‖ is equivalent to ‖u‖1. On the other hand, we have

‖SAt(ς)u‖ = (MMAt)
−1eως sup

s≥0
e−ω(s+ς)

T∫
0

∞∫
0

x|(SAt(s)SAt(ς)u(σ, x)| dσdx,

‖SAt(ς)u‖ ≤ (MMAt)
−1eως sup

s≥0
e−ω(s+ς)MMAte

ωςeωs,

which gives
‖SAt(ς)u‖ ≤ eως .

This proves that the semigroup SAt(s)s≥0 is in the class G(1, ω) of quasi-contractive semigroups in the
Banach space X1 equipped with the norm ‖.‖. Next we extend this result and characterize the existence of
an equivalent norm in X1 for the pair of generators {At, Bt}.

Definition 2.6. Let At and Bt be the generators of C0-semigroups SAt(s)s≥0 and SBt(s)s≥0 in X1. The
pair {At, Bt} is called renormalizable with constants ω and ν if for any sequences {αk}Nk=1, αk ≥ 0 and
{δk}Nk=1, δk ≥ 0, n ∈ N, one has

sup
α1≥0,...,αn≥0
δ1≥0,...,δn≥0

n∈N

e−ωΣαke−νΣδk‖SAt(α1)SBt(δ1)...SAt(αn)SBt(δn)u‖1 <∞

for each u ∈ X1.

Lemma 2.7. Let At and Bt two generators of C0-semigroups in X1 equipped with its natural norm

‖u‖1 :=

T∫
0

∞∫
0

x|u(σ, x)| dσdx.

The pair {At, Bt} is renormalizable with constants ω and ν if and only if there is an equivalent norm ‖.‖
in X1 such that At and Bt are closed, densely defined and we have (ω,∞) ⊂ ρ(At) and (ν,∞) ⊂ ρ(Bt), so
that for all λ > ω, κ > ν,

‖(λI −At)−1‖ ≤ 1

λ− ω
, (2.12)

‖(κI −Bt)−1‖ ≤ 1

κ− ν
, (2.13)

with
ρ(At) = {λ ∈ C, λI −At : D(At)→ X1 invertible}

and
ρ(Bt) = {λ ∈ C, λI −Bt : D(At)→ X1 invertible}

the resolvent sets of At and Bt, respectively.

Proof. Let us suppose that there is an equivalent norm ‖.‖ in X1 such that At and Bt are closed, densely
defined and satisfy the relations (2.12) and (2.13), then using Hille-Yosida’s condition, there are ω and ν
such that for all α, δ ≥ 0,

‖SAt(α)u‖ ≤ ‖u‖eωα, ‖SBt(δ)u‖ ≤ ‖u‖eνδ, for all u ∈ X1.
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Since ‖.‖ and ‖.‖1 are equivalent, there are M ≥ 0 and N ≥ 0 such that

‖SAt(α)u‖1 ≤M‖SAt(α)u‖ ≤Meωα

and
‖SBt(δ)u‖1 ≤ N‖SBt(δ)u‖ ≤ Neνδ,

leading to
e−ωα‖SAt(α)u‖1 ≤MAt <∞, ∀α ≥ 0

and
e−νδ‖SBt(δ)u‖1 ≤ NBt <∞, ∀δ ≥ 0 and u ∈ X1.

We see that for any sequences {αk}Nk=1, αk ≥ 0, and {δk}Nk=1, δk ≥ 0, n ∈ N, one has

sup
α1≥0,...,αn≥0
δ1≥0,...,δn≥0

n∈N

e−ωΣαke−νΣδk‖SAt(α1)SBt(δ1)...SAt(αn)SBt(δn)u‖1 <∞

and the pair {At, Bt} is renormalizable with constants ω and ν. Conversely, we consider the pair {At, Bt}
renormalizable with constants ω and ν. Then,

M := sup
α1≥0,...,αn≥0
δ1≥0,...,δn≥0
n∈N, ‖u‖1≤1

e−ωΣαke−νΣδk

T∫
0

∞∫
0

x|SAt(α1)SBt(δ1)...SAt(αn)SBt(δn)u(σ, x)| dσdx <∞.

Now we use the uniform boundedness principle showed in [10] and define in X1 the norm:

‖u‖ := M−2 sup
α1≥0,...,αn≥0
δ1≥0,...,δn≥0

n∈N

e−ωΣαke−νΣδk

T∫
0

∞∫
0

x|SAt(α1)SBt(δ1)...SAt(αn)SBt(δn)u(σ, x)| dσdx.

Using the fact that

T∫
0

∞∫
0

x|SAt(α1)SBt(δ1)...SAt(αn)SBt(δn)u(σ, x)| dσdx ≤MeωΣαkeνΣδk

T∫
0

∞∫
0

x|u(σ, x)| dσdx, (2.14)

it is clear that

‖u‖ ≤M−2M

T∫
0

∞∫
0

x|u(σ, x)| dσdx and

T∫
0

∞∫
0

x|u(σ, x)| dσdx ≤M2‖u‖ foru ∈ X1.

Then,
‖u‖ ≤M−1‖u‖1 and ‖u‖1 ≤M2‖u‖ foru ∈ X1. (2.15)

Hence the norms ‖.‖ and ‖.‖1 are equivalent. Moreover (2.14), (2.15), and the fact that At ∈ G(M,ω) also
yield

‖SAt(ς)u‖ ≤M−2 sup
α1≥0,...,αn≥0
δ1≥0,...,δn≥0

n∈N

e−ωΣαke−νΣδk

T∫
0

∞∫
0

x|SAt(α1)SBt(δ1)...SAt(αn)SBt(δn)SAt(ς)u(σ, x)| dσdx
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≤M−2 sup
α1≥0,...,αn≥0
δ1≥0,...,δn≥0

n∈N

e−ωΣαke−νΣδk‖SAt(α1)SBt(δ1)...SAt(αn)SBt(δn)SAt(ς)u‖1

≤M−2 sup
α1≥0,...,αn≥0
δ1≥0,...,δn≥0

n∈N

e−ωΣαke−νΣδk‖SAt(α1)SBt(δ1)...SAt(αn)SBt(δn)‖1‖SAt(ς)u‖1

≤M−2 sup
α1≥0,...,αn≥0
δ1≥0,...,δn≥0

n∈N

e−ωΣαke−νΣδk‖SAt(α1)SBt(δ1)...SAt(αn)SBt(δn)‖1Meως

≤M−2eως‖u‖1
≤ eως‖u‖.

We have
‖SAt(ς)u‖ ≤ eως‖u‖, u ∈ X1.

On the same way we get
‖SBt(ς)u‖ ≤ eνς‖u‖, u ∈ X1,

which means that the generators At ∈ G(1, ω) and Bt ∈ G(1, ν) in the Banach space X1 endowed with
the norm ‖.‖. Hence, At and Bt are closed, densely defined, and satisfy the relations (2.12) and (2.13) in
(X1, ‖.‖) .

Actually we have in hands all the essential elements allowing us to state the following perturbation
theorem.

Theorem 2.8. Let At and Bt be a renormalizable pair of generators of C0-semigroups on X1 and the
induced generators Ǎt and B̌t be closed, densely defined, and satisfy the relations (2.5) and (2.6), respectively.
Further, let the Banach space Y ↪→ X1 be admissible with respect to operators At and Bt so that Y ⊆ D(Bt).
If either Ǎt

∗
or B̌t

∗
is densely defined in Y ∗, or only B∗t is densely defined in X ∗1 , then the closure Kt of

the operator sum Kt:
Ktψ = Atψ +Btψ, on D(At) ∩D(Bt) = D(At)

exists and Kt is the generator of a C0-semigroup.

Proof. We just have to prove that the range of (Kt + η) for some η < 0 is dense in X1 and apply Theorem
2.1. Let T be the embedding operator of Corollary 2.4, we have by Definition 2.2 that

AtTu = TǍtu, for u ∈ D(Ǎt)

and
BtTu = TB̌tu, for u ∈ D(B̌t).

We also have D(B̌t
∗
) ⊇ T ∗X ∗1 since D(Bt) ⊇ Y . Therefore D(Kt) is dense in X1 and we obtain D(Kt) ⊇

TD(Ǎt) since Ǎt is closed and densely defined in Y which is itself densely embedded in X1.
Now let v ∈ D(K∗t ) ⊆ X ∗1 , then we obtain

〈KtTu, v〉 = 〈AtTu, v〉+ 〈BtTu, v〉

or
〈u,K∗t T ∗v〉 = 〈TǍtu, v〉+ 〈u,B∗t T ∗v〉.

Then,

〈Ǎtu, T ∗v〉 = 〈u,K∗t T ∗v〉 − 〈u,B∗t T ∗v〉 = 〈u,A∗tT ∗v〉, u ∈ D(Ǎt),
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which means T ∗v ∈ D(Ǎt
∗
) and, then, T ∗D(K∗t ) ⊆ D(Ǎt

∗
). Since D(B̌t

∗
) ⊇ T ∗X ∗1 , we have

T ∗D(K∗t ) ⊆ D(Ǎt
∗
) ∩D(B̌t

∗
).

Assuming now by contradiction that ran(Kt + η) is not dense in X1 for some η < 0, then there is v ∈ X ∗1
such that

〈(Kt + η)u, v〉 = 0, u ∈ D(Kt),

which means
v ∈ D(K∗t ) and (K∗t + η)v = 0.

Hence,
T ∗v ∈ D(Ǎt

∗
) ∩D(B̌t

∗
), since T ∗D(K∗t ) ⊆ D(Ǎt

∗
) ∩D(B̌t

∗
).

If B∗t is densely defined in X ∗1 then we apply Corollary 2.4 and find that T ∗v = 0.
If either Ǎt

∗
or B̌t

∗
is densely defined in Y ∗, then we apply Lemma 2.3 to find that T ∗v = 0. Therefore,

we obtain v = 0, which is impossible. Hence, ran(Kt + η) is dense in X1 for all η < 0. Because At and Bt
are a renormalizable pair of generators of C0-semigroups on X1, we can use Lemma 2.7 and Hille-Yosida
theorem to say that At and Bt are of class G(1, 0). Therefore the operator Kt = At +Bt is closable and the
relation

|η|‖u‖1 ≤ ‖Ktu+ ηu‖1, u ∈ D(Kt), η < 0,

yields the existence of the closure Kt of Kt. Theorem 2.1 completes the proof.

Corollary 2.9. Let the operators A(t) = A and B(t) = B, independent of t and satisfying the conditions
of Theorem 2.8, then the closure K(t) = K given as

Kψ = Aψ +Bψ, on D(A) ∩D(B) = D(A)

exists and is the generator of a C0-semigroup.

Proof. In concrete applications, A(t), t ∈ I is often a measurable family of generators or generators be-
longing uniformly to the class G(M,ω), for some constants M and ω, and since we are in one dimensional
case, one can easily verify, as shown in [13], that in this case the induced multiplication operator A is an
anti-generator or generator in Lp(I, X1), for some p ∈ [1,∞) with I ⊆ R+. This reduces the problem to find
certain conditions for the operator sum

Kψ = Aψ +Bψ, on D(A) ∩D(B) = D(A)

to be closable and its closure generates a C0-semigroup and Theorem 2.8 ends the proof.

Remark 2.10. By the relation (2.2), it follows that the closure of A(t) +B(t) generates a propagator.

This allows us to consider the following conservativeness result.

Theorem 2.11.

(a) The C0-semigroup (SKt
(s))s≥0 generated by Kt = At +Bt is conservative if and only if the associated

propagator U(t, τ), 0 ≤ τ < t ≤ T, is conservative.

(b) If the operators At and Bt, satisfy the conditions of Theorem 2.8, then the model (2.1) is conservative.

Proof. (a) We make use of the relation (2.2) and properties of U given in Definition 1.2. (b) The second
part of the proof follows from (a) and based on [7, Theorem 6.13].

Before concluding, it is important to add that alternative and similar analysis to this work can be done
using the recently introduced definitions of fractional derivatives with and without singular kernel [1, 2, 8]
and this may yield an analogue result.
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2.1. Concluding remarks

We have exploited the subordination principle, set conditions on the generators involved in the semigroup
perturbation and used the renormalization method, which is different from the preceding ones, to analyze
the fractional models of type (2.1). We dropped the class G(1, 0) for the class G(1, ν) of quasi-contractive
semigroups in X1 = L1([0, T ]× [0,∞), xdσdx), and showed some existence results and conservativeness for
the fractional non-autonomous fragmentation model (2.1), therefore, giving a stronger result than [5, 10],
where the model was autonomous and not generalized with coefficients independent of time. The result
obtained here can lead to the full characterization of the infinitesimal generator for the fractional non-
autonomous fragmentation model (2.1) and later for fractional non-autonomous fragmentation-coagulation
or non-autonomous transport-fragmentation-coagulation models, which remain open problems.
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